Liquid Price of Anarchy
نویسندگان
چکیده
Incorporating budget constraints into the analysis of auctions has become increasingly important, as they model practical settings more accurately. The social welfare function, which is the standard measure of efficiency in auctions, is inadequate for settings with budgets, since there may be a large disconnect between the value a bidder derives from obtaining an item and what can be liquidated from her. The Liquid Welfare objective function has been suggested as a natural alternative for settings with budgets. Simple auctions, like simultaneous item auctions, are evaluated by their performance at equilibrium using the Price of Anarchy (PoA) measure – the ratio of the objective function value of the optimal outcome to the worst equilibrium. Accordingly, we evaluate the performance of simultaneous item auctions in budgeted settings by the Liquid Price of Anarchy (LPoA) measure – the ratio of the optimal Liquid Welfare to the Liquid Welfare obtained in the worst equilibrium. Our main result is that the LPoA for mixed Nash equilibria is bounded by a constant when bidders are additive and items can be divided into sufficiently many discrete parts. Our proofs are robust, and can be extended to achieve similar bounds for simultaneous second price auctions as well as Bayesian Nash equilibria. For pure Nash equilibria, we establish tight bounds on the LPoA for the larger class of fractionally-subadditive valuations. To derive our results, we develop a new technique in which some bidders deviate (surprisingly) toward a non-optimal solution. In particular, this technique does not fit into the smoothness framework.
منابع مشابه
The efficiency of resource allocation mechanisms for budget-constrained users
We study the efficiency of mechanisms for allocating a divisible resource. Given scalar signals submitted by all users, such a mechanism decides the fraction of the resource that each user will receive and a payment that will be collected from her. Users are self-interested and aim to maximize their utility (defined as their value for the resource fraction they receive minus their payment). Sta...
متن کاملThe Price of Stochastic Anarchy
We consider the solution concept of stochastic stability, and propose the price of stochastic anarchy as an alternative to the price of (Nash) anarchy for quantifying the cost of selfishness and lack of coordination in games. As a solution concept, the Nash equilibrium has disadvantages that the set of stochastically stable states of a game avoid: unlike Nash equilibria, stochastically stable s...
متن کاملLocal and global price of anarchy of graphical games
This paper initiates a study of connections between local and global properties of graphical games. Specifically, we introduce a concept of local price of anarchy that quantifies how well subsets of agents respond to their environments. We then show several methods of bounding the global price of anarchy of a game in terms of the local price of anarchy. All our bounds are essentially tight.
متن کاملThe Local and Global Price of Anarchy of Graphical Games
This paper initiates a study of connections between local and global properties of graphical games. Specifically, we introduce a concept of local price of anarchy that quantifies how well subsets of agents respond to their environments. We then show several methods of bounding the global price of anarchy of a game in terms of the local price of anarchy. All our bounds are essentially tight.
متن کاملDesign Trade-offs in Concave Cost Sharing Games
This paper focuses on the design of cost sharing rules to optimize the efficiency of the resulting equilibria in cost sharing games with concave cost functions. Our analysis focuses on two well-studied measures of efficiency, termed the price of anarchy and price of stability, which provide worstcase guarantees on the performance of the (worst or best) equilibria. Our first result characterizes...
متن کامل